Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.153$
$S=1.118$
7147 reflections
490 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0722 P)^{2}\right.$ $+6.2199 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.715 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.636 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Rul-Cl	1.823 (7)	$\mathrm{Cl}-\mathrm{Ol}$	1.159 (8)
Rul-N3	2.138 (5)	$\mathrm{N} 1-\mathrm{N} 2$	1.360 (7)
Rul-N1	2.181 (5)	N2-B1	1.544 (10)
Ru1-As2	2.4393 (8)	N3-N4	1.359 (7)
Rul-Asl	2.4485 (7)	N4-B1	1.540 (9)
Rul-H1	1.78 (6)		
C1—Rul-N3	177.0 (2)	$\mathrm{Cl}-\mathrm{Rul}-\mathrm{H} 1$	88 (2)
$\mathrm{C} 1-\mathrm{Rul}-\mathrm{N} 1$	94.1 (3)	N3-Rul-H1	90.8 (19)
N3-Rul-N1	87.60 (19)	$\mathrm{N} 1-\mathrm{Rul}-\mathrm{H} 1$	178 (2)
C1-Rul-As2	88.09 (19)	As2-Rul-H1	83 (2)
N3-Ru1-As2	94.12 (13)	Asl-Rul-H1	89 (2)
N1-Rul-As2	96.46 (13)	$\mathrm{Ol}-\mathrm{Cl}-\mathrm{Rul}$	178.9 (6)
Cl-Rul-Asl	91.13 (19)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Ru} 1$	123.8 (4)
N3-Rul-Asl	86.39 (13)	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{B} 1$	123.0 (5)
N1-Rul-Asl	92.01 (13)	N4-N3-Rul	123.6 (4)
As2-Rul-As1	171.53 (3)	N3-N4-B1	123.4 (5)

H atoms bonded to Rul and B1 were refined freely; others were constrained with a riding model. The H atoms of the water molecule were not located; they are presumably disordered. The largest residual peak is $1.14 \AA$ from O 2 of the water molecule.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: CAD-4-PC Software. Data reduction: XCAD4 (Harms, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997). Software used to prepare material for publication: SHELXL97.

The authors thank Professor K. Shin for the use of the diffractometer. Financial support from the Basic Science Research Institute, Ministry of Education of the Republic of Korea (grant No. BSRI-97-3426), is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1291). Services for accessing these data are described at the back of the journal.

References

Cartwright, J., Harman, A. \& Hill, A. F. (1990). J. Organomet. Chem. 396, C31-34.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. (1997). XCAD4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Huh, S., Kim, Y., Park, Y. J., Youm, K.-T., Choi, M.-G. \& Jun, M.-J. (1999). Inorg. Chim. Acta. Submitted.

Odulota, J. A., Viswanathan, R. \& Dyke, T. R. (1979). J. Am. Chem. Soc. 101, 4787-4792.

Sánchez-Delgado, R. A., Lee, W. Y., Cho, Y., Jun, M.-J. \& Choi, S. R. (1990). Transition Met. Chem. 16, 241-244.

Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Trofimenko, S. (1970). Inorg. Synth. 12, 100-101.
Trofimenko, S. (1993). Chem. Rev. 93, 943-980.

Acta Cryst. (1999). C55, 852-854
Di- μ-chloro-bis $\left\{\right.$ chloro[(4a,5,6,7,8,8a- η^{6})-1,2,3,4-tetrahydronaphthalene]ruthenium(II) $\}$

Mark Bown and Martin A. Bennett
Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia. E-mail: bennett@rsc.anu.edu.au

(Received 30 July 1998; accepted 3 March 1999)

Abstract

The title compound, $\left[\left\{\operatorname{RuCl}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{12}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ or $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12}\right)_{2}\right]$, has the expected edge-sharing bioctahedral geometry, in which two crystallographically related [($\left.4 \mathrm{a}, 5,6,7,8,8 \mathrm{a}-\eta^{6}\right)-1,2,3,4$-tetrahydronaphthalene] RuCl_{2} moieties are asymmetrically bridged by two symmetry-related Cl atoms, with $\mathrm{Ru}-\mu-\mathrm{Cl}$ bond lengths of $2.438(1)$ and $2.440(1) \AA$, and a terminal $\mathrm{Ru}-\mathrm{Cl}$ bond length of 2.397 (1) \AA.

Comment

In the course of investigations into transition metal stabilized o-xylylene (o-quinodimethane) complexes (Bennett et al., 1992, 1995; Bennett, Bown \& Byrnes, 1998; Bennett, Bown, Hockless et al., 1998; McGrady et al., 1996), we synthesized the chloro-bridged areneruthenium dimer $\left[\mathrm{RuCl}_{2}\left\{\left(4 \mathrm{a}, 5,6,7,8,8 \mathrm{a}-\eta^{6}\right)-1,2,3,4\right.\right.$ tetrahydronaphthalene $\}]_{2}$, (I). The diffraction analysis was undertaken to investigate the conformation of the $\left(4 \mathrm{a}, 5,6,7,8,8 \mathrm{a}-\eta^{6}\right)$-1 , 2, 3,4-tetrahydronaphthalene (η^{6}-tetralin) ligand.

(I)

The two halves of the dimeric molecule are related by a crystallographic inversion centre and are joined by two Cl atoms asymmetrically bridging the two Ru atoms (Fig. 1). There is no evidence of any metalmetal bonding in the four-atom bridge plane $[\mathrm{Ru} \cdots \mathrm{Ru}$ 3.6785 (9) Å]. Both Ru atoms attain a distorted octahedral coordination via the η^{6}-tetralin ligand, a terminal Cl atom and the bridging Cl atoms. The overall geometry is of an edge-sharing bi-octahedron. The pertinent bond lengths and angles in (I) are comparable with those in $\left[\left\{\operatorname{RuCl}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (McCormick \& Gleason, 1988), $\left[\left\{\mathrm{RuCl}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}_{2} \mathrm{Et}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (Therrien et al., 1998), $\left[\left\{\mathrm{RuCl}\left(\eta^{6} \text {-trindane }\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (trindane is benzo[1,2:3,4:5,6]-1,2,3-trihydrocyclopentene; Gupta et al., 1997) and $\left[\left\{\mathrm{OsCl}\left(\eta^{6}-\mathrm{MeC}_{6} \mathrm{H}_{4}-4{ }^{-} \mathrm{Pr}\right)\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ (Watkins \& Fronczek, 1982). The aromatic ring of the η^{6}-tetralin ligand is essentially flat [maximum deviation from the mean plane of 0.005 (6) \AA] and the distance of the Ru atom from the plane is $1.638 \AA$. However, the Ru atom is not symmetrically bonded to the η^{6}-tetralin ligand, the Rul- $\mathrm{C}_{\text {arene }}$ bond lengths varying in the order C4a/8a [2.183 A (average)] $>\mathrm{C} 5 / 8$ [2.160 \AA (average)] > C6/7 [2.140 A (average)]. Similar asymmetric bonding of η^{6}-tetralin also occurs in $\left[\mathrm{Mn}(\mathrm{COMe})(\mathrm{CO})_{2}\left(\eta^{6}\right.\right.$-tetralin)] (Lee et al., 1995) and in η^{6}-naphthalene complexes such as $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)\right.$ ($\eta^{4}-1,5-\mathrm{C}_{8} \mathrm{H}_{12}$)] (Crocker et al., 1990). The C-C bond lengths in the aromatic ring are in the range [1.34 (1)1.426 (7) \AA], the variations being unrelated to the difference in the $\mathrm{Ru}-\mathrm{C}$ bond lengths or the extra-annular substitution. The uncoordinated ring of the η^{6}-tetralin ligand is disordered over two envelope conformations, with $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ defining the two possible twist conformations of the ring (refined to occupancies of 0.664 and 0.336 , respectively).

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii. The conformation of highest occupancy (0.664) is shown.

Experimental

The title compound was synthesized in 77% yield by reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with $1,2,3,4,5,8$-hexahydronaphthalene in refluxing ethanol. A crystal suitable for X-ray analysis was grown by slow evaporation of a dichloromethane solution. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta 5.48\left(\mathrm{dd}, \mathrm{J}_{5,6}=4.2, \mathrm{~J}_{5,7}=2.2 \mathrm{~Hz}\right.$, $\mathrm{H}^{6,7}$), $5.31\left(d d, \mathrm{H}^{5,8}\right), 2.83$ ($d t$, separations $=17.3,6.3 \mathrm{~Hz}$, $\left.\mathrm{H}^{1,4}\right), 2.26\left(d t\right.$, separations $\left.=17.5,6.2 \mathrm{~Hz}, \mathrm{H}^{1,4}\right), 1.95(d t$, separations $=20.2,7.5 \mathrm{~Hz}, \mathrm{H}^{2,3}$), 1.64 (dt, separations $=17.8$, $\left.7.3 \mathrm{~Hz}, \mathrm{H}^{2,3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.43 \mathrm{MHz}\right): \delta 94.59$ $\left(\mathrm{C}^{8 a, 4 a}\right), 82.36\left(\mathrm{C}^{5,8}\right), 81.16\left(\mathrm{C}^{6,7}\right), 26.54\left(\mathrm{C}^{1,4}\right), 21.49\left(\mathrm{C}^{2,3}\right)$ (assignment from single- and multiple-bond two-dimensional [${ }^{1} \mathrm{H}^{13} \mathrm{C}$]-GHMQC experiments at 500 MHz); IR (nujol): 290 , $\left.262 \mathrm{~cm}^{-1}{ }^{[} \nu(\mathrm{Ru}-\mathrm{Cl})\right]$; analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{Ru}_{2}$: C 39.49 , H 3.98, Cl 23.32%; found: C 39.11, H $3.82, \mathrm{Cl}$ 23.19%; MS (FAB): mz $579[M-\mathrm{Cl}]^{+}$.

Crystal data

$\left[\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12}\right)_{2}\right]$
$M_{r}=608.36$
Monoclinic
P_{1} / n
$a=7.552$ (2) \AA
$b=18.013$ (3) \AA
$c=8.057$ (2) \AA
$\beta=105.02(2)^{\circ}$
$V=1058.6(5) \AA^{3}$
$Z=2$
$D_{x}=1.908 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-6S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.643, T_{\text {max }}=0.808$
2099 measured reflections
1947 independent reflections

Refinement

Refinement on F
$R=0.027$
$w R=0.035$
$S=1.916$
1528 reflections
117 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$
$\left.+0.00010\left|F_{o}\right|^{2}\right]$
Table 1. Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

Rul \cdot. $\mathrm{Rul}^{\text {i }}$	3.6785 (9)	Ru1-C5	2.139 (5)
Rul-Cll	2.397 (1)	Ru1-C6	2.145 (5)
Rul-Cl2	2.438 (1)	Rul-C7	2.136 (5)
$\mathrm{Rul}-\mathrm{Cl2}{ }^{\text {i }}$	2.440 (1)	Rul-C8a	2.180 (4)
Rul-C4a	2.190 (4)	Rul-C8	2.151 (5)
$\mathrm{Cl1}-\mathrm{Rul}-\mathrm{Cl} 2$	87.37 (4)	$\mathrm{Rul}-\mathrm{Cl} 2-\mathrm{Rul}{ }^{1}$	97.91 (4)
$\mathrm{Cl1}-\mathrm{Rul}-\mathrm{Cl2}^{\text {i }}$	87.18 (5)		

The uncoordinated ring of the η^{6}-tetralin ligand is disordered over two envelope conformations, with $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 2^{\prime}-$ $\mathrm{C} 3^{\prime}$ defining the two possible twist conformations of the ring (refined to occupancies of 0.664 and 0.336 , respectively). The bond lengths within the $\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{Cl}-\mathrm{C}^{\prime}-$ $\mathrm{C} 3^{\prime}-\mathrm{C} 4$ chains were restrained during refinement, and atoms $\mathrm{C} 2, \mathrm{C} 2^{\prime}, \mathrm{C} 3$ and $\mathrm{C} 3^{\prime}$ were refined isotropically.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

We wish to thank Dr David Hockless for assistance and encouragement.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1223). Services for accessing these data are described at the back of the journal.

References

Bennett, M. A., Bown, M. \& Byrnes, M. J. (1998). J. Organomet. Chem. 571, 139-144.
Bennett, M. A., Bown, M., Goh, L. Y., Hockless, D. C. R. \& Mitchell, T. R. B. (1995). Organometallics, 14, 1000-1007.

Bennett, M. A., Bown, M., Hockless, D. C. R., Schranz, H., Willis, A. C., McGrady, J. E. \& Stranger, R. (1998). Organometallics, 17, 3784-3797.
Bennett, M. A., Goh, L. Y., McMahon, I. J., Mitchell, T. R. B., Robertson, G. B., Turney, T. W. \& Wickramasinghe, W. A. (1992). Organometallics, 11, 3069-3085.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Crocker, M., Green, M., Howard, J. A. K., Norman, N. C. \& Thomas, D. M. (1990). J. Chem. Soc. Dalton Trans. pp. 2299-2301.

Gupta, H. K., Lock, P. E., Hughes, D. W. \& McGlinchey, M. J. (1997). Organometallics, 16, 4355-4361.

Lee, T.-Y., Lee, S. S., Chung, Y. K. \& Lee, S. W. (1995). J. Organomet. Chem. 486, 141-145.
McCormick, F. B. \& Gleason, W. B. (1988). Acta Cryst. C44, 603605.

McGrady, J. E., Stranger, R., Bown, M. \& Bennett, M. A. (1996). Organometallics, 15, 3109-3114.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Foresi Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Therrien, B., Ward, T. R., Pilkington, M., Hoffmann, C., Gilardoni, F. \& Weber, J. (1998). Organometallics, 17, 330-337.

Watkins, S. F. \& Fronczek, F. R. (1982). Acta Cryst. B38, 270-271.

Acta Cryst. (1999). C55, 854-856

Tetraphenylphosphonium tetrakis(1-methyl-1,2,3,4-tetrazole-5-thiolato-S)aurate(III) hemihydrate

Ernesto Schulz Lang, ${ }^{a}$ Marisa Dahmer ${ }^{a}$ and Ulrich Abram ${ }^{b}$
${ }^{a}$ Universidade Federal de Santa Maria, Departamento de Quimica, 97.111 Santa Maria-RS, Brazil, and ${ }^{b}$ Forschungszentrum Rossendorf, Institut für Radiochemie, clo Technische Universität Dresden, Institut für Analytische Chemie, D-01062 Dresden, Germany. E-mail: abram@fzrossendorf.de

(Received 4 March 1999; accepted 22 March 1999)

Abstract

The tetraphenylphosphonium salt of tetrakis(1-methyl-1,2,3,4-tetrazole-5-thiolato)aurate(III) crystallizes as an $\mathrm{H}_{2} \mathrm{O}$ hemisolvate, $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)\left[\mathrm{Au}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{~S}\right)_{4}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, in the monoclinic $C 2 / c$ space group, with the Au atom situated on an inversion centre. The tetrazole rings are arranged almost orthogonally with respect to the square coordination sphere. Au-S-C angles of 106.2 (1) and $107.1(1)^{\circ}$ were found.

Comment

As part of our systematic work on gold compounds, we studied the reaction of tetrachloroaurate(III) with sodium 1-methyl-1,2,3,4-tetrazole-5-thiolate (NaSmetetraz). The gold(I) anion $\left[\mathrm{Au}(\text { Smetetraz })_{2}\right]^{-}$is obtained when the reaction is performed in methanol. Considerable amounts of the $\left[\mathrm{Au}^{\text {III }}(\text { Smetetraz })_{4}\right]^{-}$anion can be obtained when the reaction is carried out in water and a bulky cation is added immediately after mixing the reactants. The red precipitates obtained in this way contain impurities of the Au^{1} complex which can be removed by recrystallization from common organic solvents. Following this route, we have prepared the tetraphenylarsonium and tetraethylammonium salts of $\left[\mathrm{Au}(\text { Smetetraz })_{4}\right]^{-}$(Abram et al., 1998). A pure sample of the title compound, (I), was obtained via a two-phase reaction, where solid $\mathrm{NaSmetetraz} \cdot \mathrm{xH}_{2} \mathrm{O}$ was mixed with a solution of $\left(\mathrm{Ph}_{4} \mathrm{P}\right)$ [$\left.\mathrm{AuCl}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The insolubility of the sodium salt avoids an excess of the

(I)

